
摘 要:无人机低空航测技术可以迅速、高效、准确的获取影像信息,已经成功应用重大项目建设、城市规划管理、政府决策等领域。本文设计了无人机进行1∶500数字航测外业航飞技术路线、内业空三加密、立体测图等技术流程,结合武汉市东西湖区新沟镇实际生产项目进行试验,分析了作业过程中的关键方法并进行精度检查,结果表明可生成平面精度约为10cm 的正射影像图,数字线划图也符合大比例成图精度要求。本文结合实际分析处理方法的关键步骤,同时为1∶500数字成图提供一些借鉴和思考。
0 引言
无人机航空摄影测量以其机动灵活、成本低廉、效率较高、支持云层下作业等技术优势,已广泛应用于重大项目建设、城市规划管理、政府决策等众多领域。以无人机获取的影像信息,完成正射影像(DOM)图制作已较为成熟,由于DOM影像数据只包含二维坐标信息,无法反映地物的真实高程信息。所以,利用相关高分辨率正射影像数据恢复三维立体模型完成1∶500数字线划图(DLG)的制作,针对外业规划核实测量、违法建筑监测等多项工作都具有借鉴意义。因此,本文针对无人机航摄数字测图过程中若干关键技术问题,进行了相关研究。
1 无人机航测系统简介
无人机航空摄影系统由飞行平台、飞行导航与控制系统、机载传感器设备、地面监控系统、数据传输系统、地面保障系统、发射与回收系统等组成;概括来说,主要由高分辨率数码相机、高精度POS(GPS/IMU)定位、定姿系统或者GPS定位辅助系统组成。
本文采用大鹏CW-10固定翼无人机航摄系统,搭载SONY-ILCE7R相机以及POS平台进行测区试验,具体相关参数如表1所示。固定翼无人机相较于多旋翼无人机,抗风能力相对较强,空中飞行姿态比较稳定,价格相对低廉,因此比较适合于高精度低速航空摄影测量。
表1 无人机相关技术参数
2 无人机航测技术方法
本文根据实地调查的测区情况,结合现有资料以及相关技术规范要求,设计如下的无人机航摄技术路线,如图1所示,其中外业调绘部分不作详细论述,这部分根据甲方要求,如需实地调绘,再按照相关要求进行实地外业测量工作。

图1 无人机航摄技术路线
3 实例分析
3.1 测区概况
本次试验测区位于武汉市东西湖区,地处武汉市中西部,测区范围约为4km2;由于地区处于武汉市边缘地区,我院现势1∶500武汉市城区地形图数据并未涉及,影像数据也仅更新至2015年,为了快速准确的获取当前该地区房屋现状,用于下一步该地区的规划决策,传统的纯外业测绘效率相对较低,因此利用无人机低空航测技术完成此次外业航飞任务,获取该地区最新的影像数据。
本次无人机设计航线飞行方向为东西方向,相对航高为317m,航线重叠度为75%,旁向重叠度50%,像元大小为4.8um,影像地面分辨率为0.04m,有效架次1次,总共获取579张照片,无人机由于搭载的是非量测相机数码相机,其受地区和环境的影响较大;本地区周围有水系,航摄影像会受到一定的影响,相片边缘易产生相应的畸变;因此在空三加密平差时,会针对上述情况,结合实际,选取合理的加密点,保证空三加密和正射纠正的精度。
3.2 数据处理软件介绍
本文引入Agisoft公司开发的Photoscan软件完成正射影像图制作,使用Photomod软件进行影像空三加密平差,恢复立体像对;结合全数字化测图平台Mapmartix软件进行网络化立体测图,制作相应的DLG数据。
3.3 数据处理
Photoscan是一款无人机影像自动生成高质量三维模型的软件,软件使用视图三维重建技术处理照片,通过导入控制点生成具有真实地理参考以及详细彩色纹理的三维模型和正射影像,生成精度约为5cm 的专业级摄影测量数据。具体处理流程如图2所示。

图2 Photoscan 处理流程图
本文使用GPS RTK动态量测所需像片控制点,可以同时获取地物的平面和高程信息,由于无人机航空摄影要求影像重叠度大,基线较短,根据《1∶500地形图航空摄影测量外业规范》,外业像片控制点布设要求沿航向、旁向分别布设,具体即为沿航向间隔500m布点,沿旁向间隔500m布点。
此次试验区共布设29个控制点,其中每个控制点均可以作为平高检查点,为后续数据处理提供地理参考。此外,外业获取的像控点坐标一般为WGS84坐标,本文为了方便利用已有成果资料,使用布尔莎七参数转换将坐标转换为1954北京坐标系,进行内业数据处理,并投影至武汉市本地中央子午线E114°。最终成果高程基准和坐标系统分别为1985国家高程基准与武汉2000坐标系。
空三加密是决定无人机航空摄影像成图精度的关键步骤;本文分别使用Photomod软件中Aerial Triangulation(AT)和solver模块进行无人机影像空三加密和平差,具体流程如图3所示,软件通过判读导入的控制点和量测的控制点之间偏差,基于Patb光束法严格平差,计算点位残差,保证立体测图所需像对的精度。