​微信公众号
手机版
​​新浪微博
会员登录
关于我们  |   商务合作  |  友情链接   |  意见反馈  |  人才招聘
北京云翼同创科技有限公司 深圳高博特文化发展有限公司   版权所有,并保留所有权利 © 2018 京ICP备16044150号-1                       

跨界 · 融合 · 服务 · 创新



双击此处添加文字
新闻聚焦
行业技术
首页  >  新闻聚焦   >  行业技术  >   详情
消费类无人机图传系统设计中的一些关键
来源:AUVSC | 作者:高博特 | 发布时间: 2022-10-17 | 4205 次浏览 | 分享到:
1 个核心问题,2 个设计红线,4 个基本设计参数,8 个设计重点,以及 1 个中肯的设计建议……

有一个好消息会让你振奋,据 RichWave 公司的 HenryHo 透露,他们正在把 RTC6763 这颗几个美金的集成射频芯片与海思 H.265 平台整合。RTC6763 在 4Mbit/s 的 QPSK 调制模式下为 -86dBm 的接收灵敏度,在 S 波段 1W 发射功率和两端 3dbi 天线下,就已经具备了 7 公里以上的通讯能力。

 

上图为 ADI 的小基站方案

 

上图为 RichWave 的方案,因为 TI 还没有 H265 的DSP,后面的 DSP 实际是 H264 的编码

第四点, 天线

文中计算通讯距离都采用了低增益的 3dBi 天线。实际发射和接收则可以使用 6dBi 天线,甚至在地面使用 10dBi 以上聚焦天线或阵列天线。每增加 6dB,通讯距离就增加一倍。如果发射和接收都从 3dbi 换成 6dbi ,那就是增加一倍通讯距离了。

在一定限度内,从天线上获得更远通讯距离的机会千万不要错过。方向图和极化方式的选择是使用中最容易出问题的地方,很多人发射采用垂极化,而接收则是水平极化,使通讯距离大打折扣。地面接收天线尽可能要与发射天线的极化方式一致。

 

图示为极化方向不同的示意

如果不考虑垂直爬升很高的高度,机上发射天线比较适合采用垂直极化的全向天线,主瓣夹角可以很小,近距离可以依靠旁瓣,这样就能最大限度地保证水平通讯距离。

 

图示为 GP 的方向面,左侧是水平面内的全向,右侧是垂直平面,正下方增益很低

如果有垂直爬升需要,则可以考虑方向性不强的圆极化天线, GPS 就是选择右旋极化天线。

  

天线的增益反应的是将电磁能量集中的能力,增益越高方向性也就越强。越高增益的天线辐射主瓣夹角就越小,有些实验拿高增益天线通讯距离却还不如低增益天线,就是因为这个指向性问题。比如:高增益定向天线往往只有几度到十几度的夹角。

 

图示为一个定向天线的方向图

并没有真正意义的三维全向天线,全向天线是指在某一个平面内其方向图具有全向特性。比如垂直极化的 GP 天线,他只是在水平面上全向而已,如下图所示。

 

第五点, 基带(调制解调)

很多工程师一上来就会选择高阶调制, 比如 16QAM 星座, 8PSK 星座。的确 1080P的视频要求传输速度,但是实际上对于 6M 码流 3MQPSK 已经足够了,低阶调制的解调门限更低, 可以获得更好的接收灵敏度。

 

常用的调制方式

如果能进一步提高压缩比,采用 BPSK 也未尝不可。与 4G 和 WIFI 不同,1080P 的图传并不需要那么高的速度,却需要更高的接收灵敏度,进而获得更远的通讯距离。

我发现很多人有个误解:他们认为依据香农定理,传输速度速率越快,接收灵敏度就越低。这是个概念错误(跟香农定理真的没有一毛钱关系) 。来看看香农是怎么说的:

 

准确地说香浓定理是告诉我们,调制阶数越高(C/B越高),对信噪比要求就越高,接收灵敏度也就越低。比如 QPSK 的 C/B=2 解调所需信噪比 S/N=3,BPSK 的 C/B=1,解调所需信噪比 S/N=1。如果C(传输视频所需的数据速率)不变,只要提高射频带宽B那么C/B也就降低了,对信噪比要求也就没有那么高了,也就是用低阶调制。他反映的是频带运输信息的能力,就像火车皮和货物,绝对量与香农定理无关。

凡尘说:传输速率越快,一般说来接收灵敏度更差。

射频带宽的真正影响是,其宽度决定了输入热噪声功率,简称固有底噪,KTBRF=K*T*BRF(Hz),其中K 为波尔兹曼常数,T 为 290K 室温,BRF 为射频带宽。按照前面说的已经足够的 3M 带宽来计算,看看到底会有多大的热输入噪声混杂在接收信号内。

KTBRF(log) = 10*log(1.381*10^-23W/Hz/K*290KX3.84MHz*1000mW/W) = -110dBm

看到这个数字你就会明白为什么把接收灵敏度(第三个参数)定为 -105dBm了。其实我只是让接收信号比噪声强出几个了dB而已,我留出的余量,信噪比不到4倍(接近4)。

对于1080P图传的多机通讯问题,考虑到 ISM 频段带宽有限,射频的频分(FDM)和跳频(FHSS)都没有那么多频分信道可用,时分(TD)和码分(CD)也不适用,因此基带上的 OFDM 划分正交频分信道可能是最有前途的选择。

其实 OFDM 并非一种调制模式,他只是频分带宽的方式。咱们听 FM 广播,人民台和交通台在不同频率,相距比较远,就是 FD,如果两个电台相距很近,重叠又相互不干扰就是 OFDM。

 

示意图,横轴为频率

基带解调算法在抗干扰问题上会起到决定性作用,我们无法在使用图传的过程中阻止隔壁老王在相同频率上发射,因此找到合适的基带算法会占据整个图传设计 70% 以上的工作量。

第六点,视距通讯距离

自由空间中的视距通讯距离是没法靠地面拉据来测试的,因为地球是圆的,其可见距离如下: