​微信公众号
手机版
​​新浪微博
会员登录
关于我们  |   商务合作  |  友情链接   |  意见反馈  |  人才招聘
北京云翼同创科技有限公司 深圳高博特文化发展有限公司   版权所有,并保留所有权利 © 2018 京ICP备16044150号-1                       

跨界 · 融合 · 服务 · 创新



双击此处添加文字
新闻聚焦
行业技术
首页  >  新闻聚焦   >  行业技术  >   详情
垂直起降固定翼无人机技术发展及趋势分析
来源:尖兵之翼 | 作者:王科雷 周洲 马悦文 杜万闪 郭佳豪 李旭 张阳 孙蓬勃 | 发布时间: 2023-02-13 | 6644 次浏览 | 分享到:
垂直起降固定翼无人机具有对起降场地要求低、机动性好、巡航速度高、航时长等优势,是目前航空领域研究热点……


图13 GL-10“闪电”分布式动力倾转机翼验证机[38]

Fig.13 GL-10"Lightning"distributed dynamic tilting wing verifier[38]

美国极光飞行科学公司针对VXP项目联合罗罗公司和霍尼韦尔公司于2016年推出的XV-24“雷击”无人机,如图14所示,致力于将垂直起降飞行器的飞行速度在现有基础上提升50%。“雷击”无人机采用鸭翼布局的倾转分布式动力/机翼融合体设计,由1台罗罗公司的AE1107C涡轴发动机驱动,通过3台霍尼韦尔公司的发电机产生电力,进而驱动全机共计24个变距涵道风扇(机翼18个、鸭翼6个),2017年4月,项目团队完成了1∶5缩比验证机试飞,验证了分布式电推进系统、倾转分布式动力等设计的可行性。尽管该项目由于在研发高性能1兆瓦级发电机热管理方面遇到技术瓶颈、没有找到合适军方合作伙伴等原因被取消,但XV-24“雷击”无人机所采用的分布式混合电驱动变距涵道风扇、创新的同步电驱动系统、用于垂直起降的可倾转的分布式动力/机翼融合体,具有高效的悬停/平飞双模态适应性等特点,让其被誉为最具革命性的新型未来垂直起降飞机。

图14 XV-24“雷击”分布式动力倾转机翼验证机[39-40]

Fig.14 XV-24"Li ghtning-strike"distributed dynamic tilting wing validator[39-40]

 2     垂直起降固定翼无人机技术特点  

2.1 升推复合式垂直起降固定翼无人机

升推复合式垂直起降固定翼无人机是在垂直起降和巡航阶段各自采用相互独立的动力系统,如旋翼系统和推进螺旋桨系统,技术成熟度高,实现性较好。同时各动力系统只在特定阶段使用,不用兼顾其他工作状态,因此各动力单元均为单点工况设计,能够做到垂直起降阶段和巡航阶段的动力特性最优,是目前最为常见的垂直起降固定翼无人机布局形式。

然而,在升推复合式垂直起降固定翼无人机进行垂直起降或巡航平飞时,其垂直、水平两套升力/推力装置之一需要停止工作,完全成为废重,致使全机质量效率较低。同时,在过渡阶段垂直起降动力依旧存在,因此动力尾流会对机翼、平尾等部件产生气动干扰,影响操纵和控制。

对于采用旋转机翼的升推复合式垂直起降固定翼无人机而言,尽管将旋翼与机翼进行了结合,并从根本上避免了旋翼前飞时左右气流不对称导致的飞行速度限制。但由于需要同时满足旋翼和固定翼要求,旋转机翼需要采用前后对称的椭圆翼型,而椭圆翼型的钝后缘特征会使其在较小角度下产生流动分离,同时,旋转机翼通常需要采用小展弦比的无扭转梯形翼,与传统机翼的气动和结构特性存在一定差异[41]。此外,由于旋转机翼不具备常规机翼一般优异的升力特性,因此需要采用较大尺寸的平尾和鸭翼来共同产生升力,这使得在悬停、过渡、前飞阶段,旋转机翼的尾流与机身、平尾、鸭翼等产生较为复杂的气动干扰,对飞行器的动力学特性及控制产生不利影响[42-43]。

2.2 尾座式垂直起降固定翼无人机

尾座式垂直起降固定翼无人机采用无人机整体转动的模态转换方式,相比倾转动力/机翼类的垂直起降方案不需要额外的运动偏转机构,因此设计制作相对简单直接,使用十分灵活。但其在垂直起降时重心偏高,容易受侧风和地形的影响,有倾覆的风险。此外,尾座式垂直起降方案从垂直起降模式转化为平飞过程中,飞机姿态角变化大,对动力要求很高。在垂直起降和过渡过程中,尾座式无人机的操稳特性较差,应对突风能力不强,因此保证其在状态转换过程中需要的倾转力矩是主要难点[44-46]。

2.3 倾转动力式垂直起降固定翼无人机

(1)倾转旋翼式

倾转旋翼式垂直起降固定翼无人机[47]相当于将直升无人机和固定翼无人机合二为一。然而,由于倾转旋翼既要作为垂直起降时的直升旋翼使用,又要作为固定翼拉力/推进螺旋桨使用,而垂直起降和巡航两种模态工作环境差异显著,带来了旋翼系统兼顾垂直起降、过渡、前飞多模态综合效能的多点设计问题[48]。

倾转旋翼无人机还面临着严重的旋翼/机翼气动干扰问题[49]。在悬停状态,旋翼下洗流冲击机翼表面,使机翼受到较大的垂直方向载荷,随后的气流反弹会使旋翼效率下降,影响旋翼的悬停性能和飞机的稳定性能[50];在前飞状态,旋翼尾流仍然可以诱使机翼产生周期性气动力,容易造成旋翼与机翼耦合的气弹稳定性问题以及旋翼回转的颤振[51],对飞行安全产生影响;而在垂直起降距离地面较近时,机翼会对旋翼下洗流产生阻塞影响,可能会造成旋翼气流出现“喷泉”效应[52],也可能会造成倾转旋翼无人机在垂直下降时进入涡环状态[53]。

倾转旋翼无人机也面临着较大的过渡阶段飞行控制难题[54],这是由于倾转旋翼无人机过渡模态转换速度范围相对较窄,且动力倾角、飞机速度、飞机迎角等参数不断改变,使得全机气动特性及稳定性随时间呈非线性变化,进而导致控制难度大幅增加。