​微信公众号
手机版
​​新浪微博
会员登录
关于我们  |   商务合作  |  友情链接   |  意见反馈  |  人才招聘
北京云翼同创科技有限公司 深圳高博特文化发展有限公司   版权所有,并保留所有权利 © 2018 京ICP备16044150号-1                       

跨界 · 融合 · 服务 · 创新



双击此处添加文字
新闻聚焦
行业技术
首页  >  新闻聚焦   >  行业技术  >   详情
小型固定翼无人机集群综述和未来发展
来源:尖兵之翼 | 作者:高博特 | 发布时间: 2023-05-08 | 9833 次浏览 | 分享到:
相比于旋翼无人机,固定翼无人机具有速度快、载重大、航程长等特点,在执行任务方面具有明显的优势。……

常用到的集群飞行控制方法脱胎于常见的多智能体协同控制方法,下面主要介绍领航-跟随法和虚拟结构法。1) 领航-跟随法:将集群中某架无人机或引入一虚拟的无人机作为领航者(长机),其余无人机作为跟随者(僚机)一起随领航者运动。该方法是目前无人机编队控制中应用最普遍、最基础的一种方法。Leader-follower控制律主要是针对跟随者的控制律,领航者则需要采用其他的控制手段。例如,采用无线电信号控制领航者,针对跟随者设计了跟踪领航者的编队控制律,实现了2架固定翼无人机的编队飞行;其中,跟随者控制律分为外环和内环2层,外环控制器以最小化跟随者相对于领航者的位置误差为目标,生成期望的滚转角和俯仰角以交给内环控制。使领航者沿航线飞行,跟随者借助于机载的视角传感器估计领航者的位置,利用设计的编队控制律,实现了2架固定翼无人机按两倍翼展距离的紧密编队飞行。

北京航空航天大学段海滨教授所在的研究团队将领航-跟随法结合中鸽群的分层策略,设计了小规模无人机集群的分布式控制方法,并通过8架无人机的集群仿真对算法加以验证。

对20架固定翼无人机采用领航-跟随法进行了飞行验证,但是该文献并未给出控制律的具体形式。而虽针对固定翼无人机设计了跟随领航者的控制律,但是未作闭环系统稳定性的分析,也未考虑固定翼无人机控制受限的影响。

值得一提的是,领航-跟随法作为最基本的编队控制框架,很容易与其他方法——如势场法等相结合,还可应用诸如模型预测控制、滑模控制。领航-跟随法的主要问题是当领航者损毁后,可能会导致整个编队的瘫痪,为解决这一问题,很多研究使用虚拟领航者,并将编队中多个真实的个体作为虚拟领航者的直接跟随者,以避免全局领航者损毁后“牵一发而动全身”。研究了虚拟领航者的轨迹对各无人机已知的情况,以及虚拟领航者始终为当前无人机编队重心时的情况,并用3架固定翼无人机对控制律加以验证。研究了虚拟领航者的状态仅对部分无人机已知,需对其他无人机设计分布式估计器估计虚拟领航者的位置,从而实现协同控制的问题。

2) 虚拟结构法,其核心思想是每个无人机跟随一个移动的刚性结构上的固定点。加拿大多伦多大学的刘洪涛教授团队利用虚拟结构法研究了多无人机的运动协调问题,并进行了数值仿真。提出一种动态虚拟结构编队控制方法,可使固定翼无人机沿规划的编队轨迹飞行时完成队形变换。

虚拟结构法很好地避免了传统领航-跟随法当全局领航者损毁后,整个编队面临瘫痪的问题。事实上,虚拟领航者本质上也是将传统的领航-跟随法与虚拟结构法相结合。虚拟领航者可以看成是基于虚拟结构法确定,每个无人机相对于虚拟领航者保持期望的位形,这一点又类似于领航-跟随法中对于跟随者的控制。由此,虚拟结构法与领航—跟随法二者的界限在一定程度上也变得模糊。在基于虚拟结构法设计三维空间内固定翼无人机的编队控制策略时,基于虚拟结构法设计独轮车群体队形保持控制律时,都用到了虚拟领航者这一概念。

对于小型固定翼无人机,由于受最小前向速度和非线性动力学的约束,集群飞行面临着新的挑战。目前关于固定翼无人机集群飞行的研究还较少。Gu等设计了“外环导航/内环控制”的内外环结构的编队控制器;Xargay等研究了严格时序约束条件下的多无人机协同路径跟踪问题;美国海军研究院完成了50架规模的固定翼集群飞行演示验证,但并未涉及大规模集群的队形保持、队形变换等协同控制问题。故而,如何基于小型固定翼的平台性能约束,并考虑非理想通信等不确定性条件,实现大规模无人机集群飞行,仍然是一个挑战性问题。

3.2.6 集群安全与冲突消解

无人机集群的安全控制是系统能够顺利执行飞行任务的关键技术之一,主要包括集群飞行安全和集群使用安全。

集群飞行安全指在复杂环境中,集群能够无碰撞地飞行,主要包括集群内部的机间防撞和对集群外部障碍的规避。

一方面,无人机集群的任务环境通常较为复杂,例如建筑物密布的城市环境、山峰悬崖林立的山区环境、树木飞鸟集聚的森林环境甚至动态未知的战场环境等,无人机集群飞行中不可避免地面临与环境中各种障碍物发生碰撞的危险;另一方面无人机的数量规模不断扩大,集群内各无人机在队形变换以及任务调度过程中极有可能因为路径交叉以及飞行不确定性等因素而发生碰撞冲突。近年来无人机的撞击事故频频发生。2014~2016年间,官方报道的无人机与大型客机危险接近、发生撞击的事件一共达到24起。2017年以来的情况更加严峻,相关的事故接连发生并且被频频报道。因此进行集群系统飞行安全控制的研究至关重要。

集群飞行安全控制问题的核心是碰撞规避问题。现有研究已经提出了各种各样的理论方法。综合考虑各种方法的作用时间、适用场景以及理论基础,主要可分为路径规划、优化控制、以及反应式控制3类。1) 基于路径规划的碰撞规避:基于先验信息的全局路径规划算法最先应用于障碍规避的相关研究中,相关算法也扩展到了多智能体系统,从而实现全局的协同路径规划,但是该类算法对动态环境障碍的可扩展性较低。目前,基于传感器在线感知的局部路径规划算法更多地用于动态环境的碰撞规避研究。相关方法包括A*、D*等图搜索算法,混合整数线性规划等数值优化算法,遗传算法、粒子群算法等启发式算法,以及势场法。路径规划用于冲突消解通常能够得到一条优化的无碰撞的飞行路径,但是缺点通常是反应时间长,并且对于运动受限的固定翼无人机,不一定能够找到可行解。2) 基于优化控制的碰撞规避:基于优化控制的碰撞规避包括基于博弈论的方法、基于遗传的方法、和基于预测控制的方法等。其中模型预测控制方法凭借其预测模型、滚动时域、和反馈校正3个机制,能够显式的处理各种约束条件,在碰撞规避问题中得到了大量的研究成果。并且,针对多智能体系统发展而来的分布式模型预测控制方法,能够显式的应对子系统之间的耦合约束,因此在多机器人和多无人机系统的研究中也得到了众多学者的关注。存在的问题是,非线性、不确定性以及运动受限等系统特点对模型预测控制算法的理论分析带来了很多挑战,关于鲁棒模型预测控制、非线性模型预测控制以及分布式模型预测控制的相关理论研究有待进一步研究和发展。3) 基于反应式控制的碰撞规避:反应式的碰撞规避方法主要包括基于规则的、和基于几何的2类。其中典型的算法包括速度障碍法、互惠速度障碍法等。该算法也进一步扩展至多智能体以及群体运动场景。该类算法的典型优点是响应快。