​微信公众号
手机版
​​新浪微博
会员登录
关于我们  |   商务合作  |  友情链接   |  意见反馈  |  人才招聘
北京云翼同创科技有限公司 深圳高博特文化发展有限公司   版权所有,并保留所有权利 © 2018 京ICP备16044150号-1                       

跨界 · 融合 · 服务 · 创新



双击此处添加文字
新闻聚焦
行业技术
首页  >  新闻聚焦   >  行业技术  >   详情
“微轻小”无人机反制技术及发展趋势分析
来源:成都空御科技有限公司 | 作者:陈珂屹 曾颖 | 发布时间: 2023-11-03 | 2453 次浏览 | 分享到:
中央军委公布的《无人驾驶航空器飞行管理暂行条例》中,进一步将无人机规范划分为5种类型:微型、轻型、小型、中型及大型…...

在探测预警方面,为了增强无人机全天候侦察探测能力,需要综合集成雷达探测、光电探测、无线电探测等技术手段,通过分布式组网进行联合感知,实现在不同任务场景下对无人机目标全天候、全方位、多手段的侦察探测和跟踪监视。

“微轻小”无人机的反制手段单一,需以能力需求为导向,构建“软硬杀伤”联合打击的无人机反制系统。软杀伤针对“微轻小”无人机高度依赖控制链路的特点通常采取电磁干扰阻断、信号欺骗压制等方式,即通过对无人机遥控信号及图传、数传信号进行干扰或使用无线电攻击技术,阻断、隔绝地面控制站向无人机发射的上行无线电控制信号,最终使无人机因无法收到指令信息原地迫降,或处于引导位置上空盘旋等待通联,或原航线返回等。硬杀伤则是使用防空导弹、高射炮等传统防空  武器进行火力打击,使用定向能武器破坏或击毁无人机的核心部件,达到直接摧毁无人机的目的。激光、微波、电磁脉冲等定向能武器具有打击速度快、拦截效果好和效费比高等优势,在应对无人机安全威胁方面也更具优势。这类武器不仅能够提供更高的精度、更快的速度,而且操作更安全,比传统动能武器的性价比更高。

此外,现有的“微轻小”无人机反制系统还存在单点布控不具备大范围无缝防御能力的问题。在大防区场景下,当前无人机反制系统难以实施全面实时有效管控,面对无人机“蜂群”数量高、突防作战能力强、智能机间通信等特点,当前无人机反制系统也难以有效全面处置,同时存在智能化程度不高多依赖于人工盯防等问题。

四、“微轻小”无人机反制技术发展方向

针对当前“微轻小”无人机反制系统存在的不足,采用多手段融合、智能探测反制的反无人机系统在各行业应用中均产生了强烈需求。总体而言,未来反无人机系统的发展趋势表现在以下几个方面:一是构建网络化预警体系,分布式多节点覆盖;二是多种探测手段相融合,提升系统的稳定性;三是软杀伤和硬杀伤相结合,确保威胁目标有效拦截。因此,行业一致将分布式无人机探测防御系统作为主要攻研方向。

分布式无人机探测防御系统依据分布式无人机探测防御系统平台架构,构建分布式快速优化布站、多节点多设备自适应动态调度模型,设计多源感知信息融合策略,利用地理信息系统(GIS)进行全系统的布防区域、节点设备状态、目标态势全景展示。从而实现对“微轻小”无人机构建多探测源探测/数据融合,大范围智能化无缝防控、多手段防御反制,打造空地一体多节点、多层次防御反制体系。

系统分布式架构设计通过网络通信的方式,实现前端设备、分控中心及管控中心的系统互通。系统采用面向服务架构设计,通过标准的系统接入、推送协议,将系统的设备信息、目标数据、图像信息等推送至系统平台,实现对布防区域、节点设备状态、目标态势全景展示。

分布式快速优化布站模型则根据防御区域管控需求、应用场景、电磁环境等评估分析,优化设计防御区域布站节点,每个节点按照防区定义要求进行划分,执行对应布站策略,完成快速构建全区域无人机探测防御系统。

多源感知信息融合策略是由系统融合多节点多设备数据信息,通过同节点雷达探测与光电跟踪信息融合,提升系统探测跟踪精度。通过同节点雷达探测与无线电侦测信息融合,有效提升系统探测概率、降低系统虚警率。通过融跨节点多设备信息融合实现了对目标的跨节点广域连续锁定跟踪。

多节点多设备自适应动态调度模型可实时监测各节点负载变化、节点损毁或性能下降,通过跨节点雷达、光电、无线电协同调度,持续锁定跟踪,提高系统响应时间。运用多节点反制手段调度,进行目标多手段处置,实现全区域全时段的无人机探测防御能力。

系统内设备及相关反制技术方面也进行了诸多创新。系统采用的是自适应微轻小探测雷达,雷达信号具有准连续波特性、伪随机特性及较好的隐蔽性,通过调整脉间随机码及脉内随机码参数,改变信号带宽及时宽信息。利用大时宽带宽积雷达信号的相关并行处理算法,提升微弱目标回波信号相关检测能力。通过设备参数最优匹配的自适应调整策略,提升雷达对不同场景的通用性及灵活性。利用微普勒检测的悬停无人机探测跟踪方法,实现对悬停无人机的有效探测跟踪。

无线电方面,通过引入基于机器学习的复杂电磁环境无人机信号监测技术,构建基于无人机目标多维度信号识别特征库,有效区分合法及非法无人机。同时设备会根据不同类别无人机图传信号、遥控信号的时域、频域等先验信息,构造多尺度检测模板,结合非极大值抑制算法实现无人机信号初步检测处理,提高复杂电磁环境下无人机信号检测率。采用单站比幅测向、双站测向与时差结合、三站时差定位算法,对分布式多站环境下的目标信号进行灵活测向、定位处理。结合卡尔曼滤波算法进行点迹建航,实现对无人机的单站/多站联合高精度测向定位,无线电监测方位精度的显著提升。

场景应用方面,针对大防区全面防护的应用场景,分布式无人机探测防御系统能够基于防御区域地理环境、管控需求、设备性能等进行分布式多节点部署评估分析。依据探测预警、确认识别、打击处置等管控需求对防御区域内布站节点位置进行分层次优化设计,结合多节点设备性能分析进行多源目标信息融合识别、跟踪、打击,实现对入侵无人机的全区域多等级探测防御。针对无人机集群数量高、突防作战能力强、智能机间通信等特点,分布式无人机探测防御系统搭建集空中多节点移动式机载设备、地面多节点固定位置设备及移动车载设备于空地一体多等级告警处置探测防御区域、空地节点协同沟通进行智能调度,进而形成空地一体的多节点、多等级、机动式防控系统,可有效防御集群目标。