​微信公众号
手机版
​​新浪微博
会员登录
关于我们  |   商务合作  |  友情链接   |  意见反馈  |  人才招聘
北京云翼同创科技有限公司 深圳高博特文化发展有限公司   版权所有,并保留所有权利 © 2018 京ICP备16044150号-1                       

跨界 · 融合 · 服务 · 创新



双击此处添加文字
新闻聚焦
行业技术
首页  >  新闻聚焦   >  行业技术  >   详情
反无人机系统及其关键技术研究报告
来源:《指挥控制与仿真》 | 作者:夏铭禹 赵 凯 倪 威 | 发布时间: 2023-12-01 | 1347 次浏览 | 分享到:
充分利用现有传感器和武器完善反无人机作战策略,并加快研发新型无人机对抗装备的步伐,争取在未来反无人机作战中获得主动………

1) 干扰阻断类

①压制式干扰

针对目标无人机实施通信或者导航干扰,通过产生相对较大功率的干扰射频信号,并对目标无人机定向发射,使得无人机与遥控器之间的飞控和图传连接断开,进而无人机就会按照程序预先设定模式自行降落、悬停或者返航。除此之外,也可以对无人机的导航定位信号进行干扰,导致无人机无法正常定位而失去精确飞行能力。目前无人机使用的主流频段有900MHz、1.5GHz(GPS)、2.4GHz(通信)、5.8GHz(图传)等频段,实际应用中频段可根据应用场景定制。

②瞄准式干扰

该方式和压制式干扰的主要区别在于瞄准式干扰可根据射频侦测设备获取到目标无人机通信频率,然后对其进行有针对性的通信干扰,射频侦测可覆盖频率范围:20MHz~6GHz。

③此外,韩国KAIST的研究人员发现了一个新的无人机干扰手段,利用声波使得无人机上的陀螺仪发生共振从而输出错误信息导致无人机无法平稳飞行。

2)诱骗控制类

通过模拟伪GPS等导航信号,实现对无人机的压制和欺骗,确保无人机在保护区域平滑无意识地切换接收欺骗信号,让无人机快速定位到预设位置,或者给其一个运动场景,使无人机快速飞行,脱离操作者控制,进行诱骗。根据不同的诱骗目的,可构建相应的诱骗策略,规划相应目标航路,控制目标无人机到达指定区域。

2) 直接摧毁类

该类别的代表当属激光武器,传统常规武器通常用动能或化学能摧毁目标,而激光武器是以光速或接近光速运动的光子或粒子对目标施加能量,从而达到摧毁无人机的目的。其主要优点包括:

①反应速度快;

②瞄准打击精度高;

③附带损伤小;

④毁伤程度可控;

⑤单次作战效费比高。

3) 其他

此外,还有一些新型反无人机手段,比如利用雷达对抗技术干扰或攻击机载雷达系统,利用光电对抗技术干扰机载光电设备等。

要地防控反无人机系统

综合各设备优缺点,本文提出要地防控反无人机系统方案,系统组成图和系统结构图分别如图2和图3所示 


系统主要功能包括:

1) 系统能够利用多种传感器在复杂背景环境下有效探测“低慢小”无人机,实现多目标探测、识别及跟踪;

2) 系统具有合作目标身份识别和确认的能力;

3) 系统能够利用光电设备精确跟踪无人机目标;

4) 系统能够对有威胁的无人机进行定向干扰/诱骗、激光打击等;

5) 系统具有对无人机和操作手进行定位的能力;

6) 系统具有视频取证、存储及回放能力。

系统主要特点有:

1) 系统利用成熟技术进行模块化、组合化设计,并可根据用户需求进行配置;

2) 系统具有便携、快速布放、撤收的能力,可有效提高任务执行时的灵活性、机动性;

3) 系统适装性强,可根据用户需求进行车载集成设计。

此外,该系统可实现组网运行,核心思想是采用蜂窝网络结构实现重点区域探测和拦截全覆盖,图4为部署示意图。

 关键技术

“低慢小”目标信息处理技术

1) “低慢小”目标检测技术

①检测前跟踪技术

利用雷达探测“低慢小”目标一直都是一个难点,传统的方法是先对每帧原始数据做过门限检测,然后对过门限的测量数据做后续的跟踪处理。这样可以抑制数据流,但不可避免地造成了许多有用信息的损失,特别是对无人机等“低慢小”目标。检测前跟踪技术对未经门限处理的多帧原始数据进行能量积累,使得检测与跟踪同时进行,可以有效提高对“低慢小”目标的检测与跟踪性能。图5为检测前跟踪技术原理示意图。

 ②基于目标信号特征和杂波图的虚假目标抑制技术在复杂背景环境下,对无人机等“低慢小”类目标具有很高的检测难度,特别是存在虚假目标干扰时,探测雷达需要解决抗干扰问题。

通过对典型场景杂波图分析,结合无人机和其他小目标回波信号的特征分析,突破基于杂波图的“低慢小”目标跟踪场景下的虚假目标抑制技术可有效解决这一难题。

2) 多目标跟踪技术

多目标跟踪主要包括数据关联和状态估计两大技术,主要是对所接收的量测数据进行处理,目的是维持对多个无人机目标当前状态的估计。其中数据关联的作用是分配量测数据和目标航迹,而状态估计则利用关联上目标航迹的量测数据对航迹的当前状态进行滤波估计。

①数据关联技术

数据关联的目的是以最小的计算复杂度来获取最大的正确关联概率,在多目标以及复杂背景环境下存在很多不确定因素,比如目标环境和目标个数的不确定性,传感器的不完备性,跟踪环境缺乏先验知识,无法判断量测数据来自于目标还是杂波等,这一切使得传感器的量测和目标源之间无法很好地对应。因此,要想有效降低错误关联的概率,需要根据统计假设和问题的实际背景选择合适的跟踪门,减少需要关联的有效量测数,从而使跟踪门内来自非本目标和干扰的回波相应减少。随着目标数、量测数及杂波密度的增加,计算量迅速增加,需要探索更合理的数据关联算法,提高跟踪性能并且改善算法的复杂度和实时性。

②状态估计技术

状态估计是在数据关联之后进行的,目的是通过概括传感器提供的目标点参数建立和更新航迹,并滤除噪声,进而外推下一周期目标可能出现的位置。状态估计性能的好坏取决于数据关联正确与否,并且如果所采用的目标运动模型和目标的真实运动不一致,滤波器可能会发散。