​微信公众号
手机版
​​新浪微博
会员登录
关于我们  |   商务合作  |  友情链接   |  意见反馈  |  人才招聘
北京云翼同创科技有限公司 深圳高博特文化发展有限公司   版权所有,并保留所有权利 © 2018 京ICP备16044150号-1                       

跨界 · 融合 · 服务 · 创新



双击此处添加文字
政策法规
首页  >  政策法规  >  详情 
我国智能农机的研究进展与无人农场的实践
来源:华南农业大学学报 | 作者:佚名 | 发布时间: 2021-12-13 | 14692 次浏览 | 分享到:
智慧农业是现代农业的高级形式,无人农场是实现智慧农业的重要途径,智能农机是无人农场的物质支撑......

作物长势信息主要包括作物生长状况(株高、叶面积指数、生物量、倒伏面积等)、养分胁迫和产量等信息,目前多采用高清数码相机、多光谱相机以及热像仪等传感器进行测定。杨贵军等[19]研发了一套农业多载荷无人机遥感辅助小麦育种信息获取系统,可以实现冠层叶面积指数、作物倒伏面积和产量的高通量数据获取。孙红等[20]基于作物在红光范围660 nm附近的光谱深吸收和近红外850 nm附近的光谱强反射特征,设计了一种采用主动光源的双波长便携式叶绿素含量检测装置,可以高效检测作物叶绿素含量。杨燕琼等[21]采用卫星、高光谱仪和3CCD摄像机多信息融合技术,进行了水稻生产过程中的叶绿素含量、叶面积指数测定以及生物量和产量估测,估产方程的复相关系数均大于0.92,精度均在89%以上。汪沛等[22]采用无人机遥感平台获取水稻冠层图像,提出了基于矩形约束对低空多光谱图像存在的桶形畸变进行校正的方法,该校正方法解决了没有或缺少地面控制点的图像校正的困难。臧英等[23]建立了基于标准种植比值法的水稻养分信息快速解析和施肥决策模型,通过与已有标准种植模型比对的方式生成施肥处方,该方法可以有效地减少施肥决策中对土壤肥力数据的依赖,提高了管理决策的效率。

在作物长势信息的快速获取和解析处理中,传统的航天、航空遥感技术存在气象影响因子多、周期长、分辨率低等问题,尤其在广东等南方地区,适合遥感的无云气象条件的时间窗口期更少。采用无人机进行作物长势信息的近地遥感获取,可弥补现有航天、航空遥感技术的不足。受载荷量及滞空时间的限制,无人机挂载的遥感传感器要求质量轻、体积小。此外,受航空管制的影响,飞行高度通常比较低,这就决定了无人机低空遥感单张影像的覆盖面积难以达到传统航空航天的遥感覆盖面积。按照传统的做法,遥感监测66.67 hm2,拼接前的影像采集量可达5 000幅,普通图形工作站完成校正、拼接及解析等处理工作需要5 h以上。而作物的田间管理对农时要求通常时间比较短,需要即时生成作业处方图,遥感信息的获取和解析处理需要有较高的实时性才能满足实际生产的要求。Jiang等[24-25]研制的遥感传感器可以提供与专业级高光谱仪器和多光谱相机相近的反射率和辐射照度测量精度,在水稻长势信息解析中,该研究信息解析数据量可达534.6 hm2/min,相比传统方法,长势专题图的生成速率和变量施肥处方图的决策效率大幅度提升。

 

1.1.3作物病虫草害信息

作物病虫草害的早期准确监测是精准喷施作业的基础,对精准用药和早期防治具有重要意义。作物光谱反射特性与作物叶绿素含量具有高度相关性,当植株遭受病虫草害时,可以通过光谱的方式进行检测。目前,常用的作物病虫草害监测方式主要有光谱检测法、图像识别法和电子鼻检测法等。袁媛等[26]利用R分量和中值滤波进行图像预处理,并采用支持向量机的方法对水稻纹枯病进行分类识别。刘又夫等[27]对褐飞虱Nilaparvata lugens(Stal)诱导的水稻冠层热图像温度特征变异评估方法进行了研究,将水稻冠层的温度特征作为输入向量,对水稻受褐飞虱侵害状况测试集判断的精准率达到87.15%。He等[28]采用深度目标检测网络对水稻局部图像中的褐飞虱进行检测和计数,提出双层R-FCN网络的褐飞虱检测和计数算法,可以有效提升算法的召回率,召回率可达60.44%。邓向武等[29]基于多特征融合的DBN模型和深度置信网络对稻田苗期杂草进行识别,识别率为91.13%。Liu等[30]采用深度卷积网络对5 136幅图片进行了虫害识别(12种水稻虫害),准确度约为95%。李泽轩[31]收集并整理了包含15种病害和22种虫害的水稻病虫害数据集,在深度残差网络的基础上提出了改进算法FRNet,对水稻病虫害的识别率超过了80%。李梓和[32]建立了一个包含8种稻田杂草的目标检测数据集,针对稻田杂草数据存在复杂背景以及目标相互遮挡等问题提出了Det-ResNet,检测精度达到了91.6%,并提出了一种轻量化的RetinaNet检测模块Efficient retinahead(ERetina-Head),可以使模型的检测精度提高1.2%。

1.1.4农田障碍物目标识别与定位

农田中存在着各种障碍物,影响了智能农机的正常作业,并存在安全隐患,因此,智能农机必须具备障碍物识别与检测的能力。在智能农机对障碍物检测的研究中,按照所使用的传感器种类可以将障碍物检测分为基于超声波、毫米波雷达、激光雷达、机器视觉以及多传感器融合等多种方法[33]。贾闯等[34]研制了山地果园单轨运输机超声波避障系统,在一定条件下,该系统能够识别轨道上的障碍物和轨道旁的非障碍物,提高了单轨运输机无人驾驶运行时的安全性和可靠性。王水满[35]基于单线激光雷达传感器进行了无人机360°全方位障碍物检测与识别,根据获得的障碍物信息和无人机的状态信息,实现无人机的自动避障。高振海等[36]采用自适应卡尔曼滤波算法对毫米波雷达数据进行分析,估计前方目标的运动状态,估计结果精度较高且滤波收敛稳定。基于深度学习的目标检测算法根据候选框的生成方式,分成一阶段(One-stage)目标检测算法和二阶段(Two-stage)目标检测算法:一阶段目标检测算法的代表有YOLO系列[37]和SSD系列[38]等,一阶段目标检测算法计算量小、检测速度快,但准确率较低;二阶段目标检测算法的代表有R-CNN[39]、Fast R-CNN[40]和SPP-NET[41],二阶段目标检测算法的计算量大、检测速度慢,但准确率高。蔡舒平等[42]对YOLOv4目标检测模型进行了改进,改进后的模型参数减少,检测速度提高了29.4%,鲁棒性强、实时性好。马佳良等[43]在传统的Fast R-CNN基础上,提出了Accurate R-CNN目标检测框架,可以在不同数据集和不同的任务上取得良好的检测效果。