​微信公众号
手机版
​​新浪微博
会员登录
关于我们  |   商务合作  |  友情链接   |  意见反馈  |  人才招聘
北京云翼同创科技有限公司 深圳高博特文化发展有限公司   版权所有,并保留所有权利 © 2018 京ICP备16044150号-1                       

跨界 · 融合 · 服务 · 创新



双击此处添加文字
政策法规
首页  >  政策法规  >  详情 
我国智能农机的研究进展与无人农场的实践
来源:华南农业大学学报 | 作者:佚名 | 发布时间: 2021-12-13 | 14695 次浏览 | 分享到:
智慧农业是现代农业的高级形式,无人农场是实现智慧农业的重要途径,智能农机是无人农场的物质支撑......

1.4 智慧管理

智能农机的智慧管理包括远程监控农机作业位置、作业速度和作业质量,远程监控农机作业工况并进行故障预警、指导维修和农机远程调度。目前,各种智能农机上都安装有GNSS装置,农机开始作业就可将农机的位置和作业轨迹实时发送至农机管理中心和农机生产企业,并支持农机作业历史数据记录与轨迹回放,而装有质量监控传感器的智能农机可同时发送作业质量的相关数据,包括耕、种、管、收各环节的作业质量。通过安装在农机上的各种工况传感器,农机管理中心和农机生产企业可远程监控农机的实时工况,如拖拉机的发动机参数、PTO转数、行驶速度等,收获机的发动机参数、割台高度、实际割幅、脱粒滚筒转速、清选风扇转速、净粮升运速度和谷物流量等,播种机的播种量、播种堵塞状态和播种深度等,施肥机的施肥轮转速、施肥量和堵塞状态等,喷雾机的喷雾压力、药液流量和喷头区段状态等。将所获得的各种工况信息与数据库中的相关数据自动进行对比,如出现异常,即向农机驾驶员或无人农场管理中心发出预警信息,比如发现收获机脱粒滚筒转速降低过多,就立即建议降低收获机前进速度或减小割幅,以防止堵塞;出现故障,就指导驾驶员或相关人员进行排除或维修;出现较大故障,就通知农机所在地的维修站人员前往维修[95]。通过远程监控智能农机的位置和作业速度,根据最小转移路径原则,可以对农机进行远程调度[96]。

王慧平[97]采用Java语言和ArcGIS等开发工具,结合ArcGIS JavaSrcipt AP1、Ajax及JSF等关键技术,设计了一种基于WebGIS的农机远程监管服务系统,实现了农机实时跟踪、农机历史轨迹回放、农机作业任务报单、农机作业任务计量和农机作业工况报单等功能,能够及时获取和有效管理农机作业现场各类数据,实现了农机信息采集、传输、分析和访问的集成化。谢婷婷[98]开发了一套基于遗传算法(Genetic algorithm,GA)的农机作业调度系统,提出了一种改进的遗传算法。系统还结合北斗卫星导航技术和地理位置信息系统,生成农机调度方案,实现了农机跨区作业调度。崔征泽[99]结合数据传输子系统、数据分析子系统以及监测管理子系统,设计了一种用于农机终端监测的物联网应用系统,可以对农机终端数据进行收集、存储和分析,并根据农机终端传感器数据分析农机作业质量,实现对农机的高效管理。

 2 无人农场的实践  

华南农业大学集成相关的智能农机装备,创建了水稻无人农场,并在广东增城进行了实践,2020年的中稻试验面积为1.87 hm2,2021年的早稻和晚稻试验面积为3.33 hm2。增城水稻无人农场从2020年5月3日开始旋耕,至8月30日收获,历时120 d,实现了水稻生产耕种管收全程无人作业。水稻无人农场的稻谷产量均高于当地的平均产量,表明了其巨大的发展潜力。2021年早稻生产采用优质丝苗米品种‘19香’,产量9 943.35 kg/hm2,高于当地的平均产量7 500 kg/hm2。2021年在广东三水启动了花生无人农场建设,产量3 164.10 kg/hm2,高于广东省花生种植的平均产量2 400 kg/hm2。水稻无人农场具有耕种管收生产环节全覆盖、机库田间转移作业全自动、自动避障异况停车保安全、作物生产过程实时全监控和智能决策精准作业全无人等5个特点。

2.1耕种管收生产环节全覆盖

2.1.1耕整

采用无人驾驶旋耕机进行旱旋耕,直线行驶横向误差不超过2.5 cm,田头转弯对行误差不超过3.0 cm。作业质量好、作业效率高,2021年在3.33 hm2试验田中的旋耕作业效率可达到1.33 hm2/h。

2.1.2种植

采用无人驾驶直播机进行精量旱直播,这是华南农业大学近10年来在国内推广的一种轻简栽培技术,在新疆采用精量旱直播技术3年平均产量均超过15 000 kg/hm2[100]。播种时将水稻干种或浸泡24 h后的湿种(不催芽)直接播在播种机开出的播种沟中并覆土(2 cm左右),然后上水5~10 cm;几天后,待水自然落下后,稻种吸饱了水,土壤湿润,稻种扎根出苗情况特别好。

2.1.3管理

在水稻生产前期采用无人机施肥和施药,作业前先用无人机获取水稻生长的养分胁迫和病虫害情况,然后制定施肥和施药处方图,实现了精准对靶喷施。在水稻生长后期,采用无人驾驶高地隙喷杆喷雾机(地隙1 m、喷幅12 m),雾化效果好、作业效率高,由于作业路径采用了优化规划方法,实现了喷雾时“不重不漏”。

2.1.4收获

华南农业大学成功研制出2种无人驾驶主从收获系统:第1种为随车卸粮模式,作业时无人驾驶卸粮车与无人驾驶收获机并行,在直线段卸粮,直线行驶时收获机和运粮车横向位置误差不超过5 cm、纵向位置误差不超过10 cm,可保证收获机准确地将稻谷卸至运粮车中。第2种为等待卸粮模式,无人驾驶收获机在田中收获时,无人驾驶卸粮车在田边等待;收获机粮仓快满时,通过云端服务器向卸粮车发出卸粮通知,卸粮车随即自动行驶至收获机旁边,收获机准确地将收获的稻谷卸至运粮车中;卸粮后收获机继续收获,卸粮车粮仓装满后自动开至田边,将稻谷卸至运粮卡车中,由运粮卡车将稻谷运至干燥中心。在广东增城水稻无人农场的收获中,采用了第2种模式,即等待卸粮模式。