​微信公众号
手机版
​​新浪微博
会员登录
关于我们  |   商务合作  |  友情链接   |  意见反馈  |  人才招聘
北京云翼同创科技有限公司 深圳高博特文化发展有限公司   版权所有,并保留所有权利 © 2018 京ICP备16044150号-1                       

跨界 · 融合 · 服务 · 创新



双击此处添加文字
新闻聚焦
行业技术
首页  >  新闻聚焦   >  行业技术  >   详情
专利摘要显示,本公开是关于一种飞行路径信息的上报方法及装置、信息确定方法及装置、基站、无人机和计算机可读存储介质
来源:1.北京航空航天大学 无人系统研究院,2.北京航空航天大学 航空科学与工程学院 | 作者:向锦武,阚 梓,邵浩原,李华东,董 鑫,李道春 | 发布时间: 2021-07-14 | 38046 次浏览 | 分享到:
对长航时无人机的发展现状及关键技术进行了分析与总结.长航时无人机留空时间长,作业覆盖区域广....

[166]ZHANG Zengan, CHEN Xin, ZHOU Yueping. Implementation of a distributed fault-tolerant computer for UAV[C]//Proceedings of the 2010 International Conference on Electrical and Control Engineering. Wuhan, China: IEEE, 2010: 1. DOI: 10.1109/iCECE.2010.1278

[167]HEYDARZADEH M, NOURANI M. A two-stage fault detection and isolation platform for industrial systems using residual evaluation[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(10): 2424. DOI: 10.1109/TIM.2016.2575179

[168]WANG Zheng, ANAND D M, MOYNE J, et al. Improved sensor fault detection, isolation, and mitigation using multiple observers approach[J]. Systems Science & Control Engineering, 2017, 5(1): 70, DOI: 10.1080/21642583.2016 1278410

[169]ZANOLI S M, ASTOLFI G. Application of a fault detection and isolation system on a rotary machine[J]. International Journal of Rotating Machinery, 2013: 1. DOI: 10.1155/2013/189359

[170]曾国奇, 向锦武, 赵民强. 一种基于卫星通信的无人机导航数据被欺骗识别方法: 201510666815.8[P]. 2016-01-13

A review of key technologies for long-endurance unmanned aerial vehicle

XIANG Jinwu1,2, KAN Zi2, SHAO Haoyuan2, LI Huadong2, DONG Xin2, LI Daochun2

(1.Institute of Unmanned System, Beihang University, Beijing 100083, China;2.School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China)

Abstract: To investigate the development trends and challenges of long-endurance unmanned aerial vehicle (UAV), the research status of key technologies were analyzed and summarized. Long-endurance UAV has extensive application prospects because of its characteristics of high flight height, long operation time, and wide operation coverage. First, the representative long-endurance UAVs in the world were classified based on conventional power and new energy power, and the development history of long-endurance UAV was reviewed. Based on the demand of high lift, high lift-drag ratio, and moderate stall aerodynamic characteristics of long-endurance UAV, the large flexibility of high-aspect-ratio composite wing, and the complex mission environment of long-endurance UAV, the key technologies were analyzed, including high efficiency aerodynamic integrated design technology, aeroelastic analysis of high-aspect-ratio wing and active control technology, aeroelastic tailoring technology, flexible flight dynamics modeling and control technology, and autonomous navigation technology, etc. Finally, combined with the development situations of foreign long-endurance UAV, suggestions for the development of long-endurance UAV in China were put forward. Research shows that the conventional power long-endurance UAV has been widely used, while the new energy power long-endurance UAV is still in the prototype development stage. Technologies applied on the ultra-long-endurance UAV which has a duration of more than a week have become the focus of attention. The intelligence, collaboration, and network security of long-endurance UAV systems will be the main development directions in the future.